If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+42x-12=0
a = 6; b = 42; c = -12;
Δ = b2-4ac
Δ = 422-4·6·(-12)
Δ = 2052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2052}=\sqrt{36*57}=\sqrt{36}*\sqrt{57}=6\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{57}}{2*6}=\frac{-42-6\sqrt{57}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{57}}{2*6}=\frac{-42+6\sqrt{57}}{12} $
| (x-4)×3=27 | | 7(1x+4)=28 | | 13(2x−9)+7=10 | | 25=35x | | (x+2)×3=12 | | 16x^2-257x+16=0 | | 7+7x-5x=9 | | 1−m=6−6m | | X^2=1,8y | | x=8=68 | | (x+2)x3=12 | | 2(7m-3)+4m=138 | | 7x+5x+2=-8x-5+3 | | x(3x+4)=39 | | -2(1+6m)-4=-120 | | 3*3*13=x | | 9/24=x+16/24 | | 8(x-7)=15x | | y^2+50/25=160,002 | | y2+50/25=160,002 | | 3(n-14)=6 | | -(p-18)=8 | | Y=2x+8/7 | | 8-8x=1-8x | | m/11=55 | | 3x+60=126 | | m+256/10=31 | | 6(2x+1)-5x=3x+2* | | -2x-6=x+-15=x+21 | | 10x+50=160 | | 7x+5=11=5x | | 2/3r-3=1 |